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ABSTRACT

For an integer k 0 1, let t :- (t ) be a nondecreasing real sequence

with ti < t tk , and let

Ni,k(x) :- t ([ti+I,...,ti+k] - k...t i )(-x)

It is well-known that N are B-splines of order k for the knot
i,k4t

sequence t. Suppose that := (Ij) is a sequence of integers and

T t P * Then N J,k, allows the following representation:

Nj,k,r 6 J,k,T,t MN)i,k, t •

The coefficient sequence k, is called a discrete B-spline with T and
-I!

with respect to t. This paper develops several properties of discrete

B-splines and proves, in particular, the total positivity of the discrete

spline collocation matrix.
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SIGNIFICANCE AND EXPLANATION

Spline interpolation is an important tool of approximation. Usually, it

costs less computation and yields a good approximation. The question of

existence and uniqueness of such an interpolant is settled by the Schoenberg-

Whitney Theorem, which is the basis for spline interpolation. There is a

strong relationship between a spline and the coefficients in the expansion of

the spline into a B-spline series. In many ways, the coefficient sequence

behaves like the spline it represents. For this reason, it is called a

discrete spline. In this paper, we develop several properties of discrete B-

splines and prove the discrete analogue of the Schoenberg-Whitney theorem. It

is expected that the result obtained here would play a role in discrete spline

interpolation, discrete minimization and other related areas.
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TOTAL POSITIVITY OF THE DISCRET SPLINE COLLOCATION MATRIX

RONG-QING JIA*

Discrete polynomial splines on a uniform mesh were first introduced by

O.L. Mangasarian and L.L. Schumaker [9], where discrete polynomial splines

were defined as the solution of certain discrete minimization problems. Later

on, L.L. Schumaker fill gave a description of constructive properties of these

discrete polynomial splines. T. Lyche in his thesis 18] translated many

theorems on continuous polynomial splines into their discrete analogues.

However, they did not view discrete B-splines as B-spline coefficients of

continuous splines, which allows consideration of discrete spline for

arbitrary meshes. It was C. de Boor who first took such a point of view. In

my opinion, de Door's point of view has some advantages (see the

postscript). Thus we shall develop de Boor's idea in this paper and, in

particular, prove the total positivity of the discrete B-spline collocation

matrix.

Let us begin with some notations. As usual, Z denotes the set of

integers, R the set of real numbers, and AS the set of functions on B

into A. Thus, 3 is the set of real bi-infinite sequences. For ij 65,

we mean by [i,j] the set (n e s, i 4 n 1 j).

For k e3, k 0 1, lett :- (t ) be a non-decreasing real sequence

with ti < el+k , It is well-known that

N (i '00ft - E M. t)k-1
i,k,t i+1, i+k i,**,ti+k ) . +

*Mathematics Department, University of Wisconsin-Madison, Madison, WI 53706.

Sponsored by the United States Army under Contract No. DAAG29-S0-C-0041.
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are 31-splines of order k for the knot sequence to Here,

denotes the r-th divided difference of the function f at the points

k-i1 k- I
P ".-O .. and Cx-t) + s- (max (O,x-t))

suppose now that Wi )- is an increasing sequence of integers. For

Ti: t 1 ~ consider the 3-splines associated with the knot sequence

M t - ((r 0...,r I - IT k-i*O

ilk#! J+1 i+k Jk-+

Since N is also a splin. with knots t, it can be represented as a
jfk#T

linear combination of the N 's~tt, by the Curry-Schoenberg theorem (see

(41 113]):

(1N Mjk, - .N 4()W~

4 Following de Door (21, we make the following definition:

Definition 1. The coefficient sequence 0 Sp#oteR in (1) is called a

discrete B-syline with knots T and with respect to t.

it is known from (2] that

(2 jkti~i J+k tj)(iv eutik) ti,+ + ( i~k-1 ~+*

When kui, (2) reads

-2-



2, J0110301~ l M (t J+1 " itl t j lt-11 1 .  t i)+ 
°0

where
1 if i > t

0 if A i,

If T and t are clear from the context k,will be abbreviated as

, or even to

Remark 1. Definition I uses a different normalization than do (5.10a)

and (5.10b) of [2]. Clearly,

li) - t+k t j 1a1M
ji,k,T,t " t ti

where Y_(i) is in the sense of (5.10b) of [2].

Let us now establish some basic properties of discrete B-splines.

Lama 1. •(Marsden's Identity)

(3) JBk,.,t -1.

Proof. It follows from Narsden's Identity (see 121) for continuous

B-splines and (1) that

Since N i,k, e Z) are linearly independent, (3) mast hold.
,e

LeSa 2. (Composition formula) Let t 1- (t i) be a non-decreasing

real sequence with ti < t a subseclence of t and T a subsequence
Si+k# n usqec

of. Then~

-3-
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Proof. By (1).

Ojk rl(' M i,k,t - Nj ,k,-[ O sk,T, 2 'P 1 ~lokeg

Since Ki3 (" e 3) are linearly independent, (4) follows from the

above equality.

Leina 3. (Recurrence relation) For k )o 2

(5 
0 j~ Mi - (rJ4 ) 0- tif,) 1+I)k'+ (t,.,.iTj 0 1k-IM

J~ ~ ikIIJ+k - J+I ik1TJ+k'-I Tj

Proof. Note that for any T e t

(T- ii + ** -ti+k-2)+ (T- ik-i +

(T-ti+1t + 04( i+k-2 +'( 14tk-i)

Applying Leibniz's formula to the above product, ye obtain

0 Ci) - Cr J-Tjr. H 000TJ~k 1-t+1 + ee 14tik-i 4.

J+k

-T J~k?1j)IT 06h0T J~kl)(C-tLI) + 9440-t .k- 2 )+(T J.k-ti+k-1)

+ TJ+k 131) 4 FO'TJk-1 1-t+1 + OOO i~k-2 4.

-4-



J4kti+k-1 )[ji *# rJ+k. -' j **TJ+k-1 1)(- +1 4+ .6(-+k-2 )+

+ (I -t7" )( j 10*, *- )(0 t i+ ) ).(- ,...,c )).- + 4 .(

(( +k ±4ik-I ) T J+1'POOO j+k I 14( ik-1Ii WE j P. TJ+k-1 ±41 -t14k+006- f

O0I~- Mi 0 JgkiU)
( T Jk- ti~- ) T C t -T ) JbklIT

This proves Lema 3.

Lea4. For afixed aue , let

I if I <
V i +I if 

0 a

I StV AM~ In other words, g is formed by drogwing an

entry from s. Then

(6a) Olk'eat!1M 0 for A£ i-I or I > L

6b) 0 Ci)kg~ M 0 ith strict in ggnality 1ff t±+k > )
(6c) 0 ±k'at Mi > 0 with strict inequlity 1ff ti (1t

Proof* if t~ ~t then N -N ,and it follows that
S t,k, 8  £1 1,k,t

CiU) -6for all iI.

in the same way, for t£+k+1

011k Ci) M 6 ±t for all i,&.

Nov (6a) is easily derived from what has been proved. Moreover, when

t < (t (t +k+I1e weehave



SN,k l ,k,t + 0  k,t ) L+lukut

It is known that U has the same sign as 0k, t') in (ts, to + e)

for sufficiently small C > 0 (see(2]l) so

0 Irk,,t(1) > 0 for tA < t a t k+li

slilarly

k (1t+1) > 0 for tA < t a < tk+I

Sumarizing these facts we get (6b) and (6c).

Lma5. suppooe Ke s and T t for all j ez. Then

0 i) 0

vith equality if and only if one of the following four cases occurs:

(7a) t( < t p

(7b) t i - t and max (pl t t } ) max (ql t -J+qt }-

(7c) t+k t > %pJ+k

(7d) tifk - t+ k  and max{pl t t+k.t+k > mx(ql t Jk-t t ".

Proof. We use the linear functional Xl given by the rules

(8) 1 f Im ( -I)r YMrlf(C), all f,
r0

-.6-



where f(t) : (t - t)..(t - t)/(k-1)t and t < C t Bk y • ei+1 i+k-1 f

do Boor-Fix Theorem (se.[4, 116-1183),

*(9) X4i~j,k, j:,3,T,t(i) "

Zn case (7a), choose so that ti < < t Then

N ~,( ) .N a ,, -. ... -, -k - k'I ' :  0.
Njek,Z jOkolMT ,kj() 0

Hence (8) and (9) yield

0jpk,,t i) - AmJ,k,- 0.

In case (7b) write c :- max {pjt,+ - t, d a- max (qlt, - t ). Then

d 4 c-1 and

N (t= N(k-d-2)r(te 0

Jk, t+) Nj,k,Z(ti+) - - j(k,2 " " 0

V ) , - 1 (t,+) - 0.

Taking [ - t + in (8) and substituting these values into (8), we obtain

0 JAVIl M - imj,k,z - 0.

Cases (7c) and (7d) can be treated in the same way.

Now suppose that none of (7a) - (7d) is true. We want to show

(i) > o t

-7-
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;A Ik e and IIl : the cardinality of S.

We shall proceed by induction of Iii. The case 3i1 - 0 is trivial. The

case i11 - I is reduced to Lema 4. Assume now that our statement is true

for 121 ( n. We want to prove our statement is also true for EII - n. Take

any a e R. Let g be defined as in Lemma 4; that is, vP - I for £ < s,

V, - +1 for 1 ; S and p t t By Lemma 2 and Lema 4,

= BJkRUl) Oi.1 ,k t,() + Bj(kiM)O okCli).

All terms that appear in the above equality are nonnegative. It seems

appropriate to treat the following three possible subcases individually.

Mi) ti ) t5 . In this case, Bi_1 ,k,gt(i) > 0 by (6b). We need to

show B jk ie, U-i) ) 0. If i-i ; s, then Vi_1 = i and Vi_ +k - i + k;

so 0jekTtU(i-1) > 0 by induction hypothesis. Assume now i-I < s. If

ti > tPJ. then t i > t or

t. t and max t } 0 - max (qlt t ).i- ax: (ptiP- i-I J I

Hence B (i-1) > 0 by induction hypothesis again. Finally, suppose

ti  t j Then t ; t , tPj implies to - t . Thus Uj < it for

otherwise ia ) i and i ( s would imply

max (pit = t } > max (qit = t ),
i+p M tJI P

a contradiction. In conclusion,

- I t :',-8-



max (i p  -P " max (pt t C max {qlt "t },

so that (i-1) > 0.

(ii) t +k 4 t . This case can be treated in the same way as i) is.

(iii) ti < t a t ift Leama 4 tells us that both Mi1kt~i) and

ik,(i) are positive in this case. Thus we need to show that at least

one of B j,k,T,(i-1) and 0.BkTR (i) is positive. If either ti > tpj or

t t , then this holds by the observation made in i). Next, suppose

ti m t , t m tPJ+k and

either max (plti+P - t I} < max {qlt t }Sj+q 1j

or max {pit = t < max (qlt t }

i+k-p i Pij+k-q j+k

then one can easily get 0jjkT(i-1) > 0 or Bj,k,= ,i(i) > 0, using the

same argument as in i). The remaining case to be discussed is

max (pit i+p 0ti}  max (qt = t and
j+q

max {plt - t max (qlt t }
i+k-p if +k-q i

Let c : max (Piti ti, e := max {Piti+k-q  t t Then

Pj+c+1 > i+c, P j+k-e-1 < i+k-e,

hence

Pj+k-e-1 - Pj+c+1 4 (i+k-e-1) - (i+c+l) M (J+k-e-1) - (J+c+l).

This means s e , which contradicts the choice of s. Lemma 5 is proved.

-9-
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We are now in a position to prove our main result.

Theorem 1. Let t- (ti ) be a nondecreasing real sequence with

t i +k  al an increasing integer sequence, T tj and

let T t- (T _ Let (0 )J- be the sequence of discrete B-splinee of

order k with the knot sequence T and with respect to iet

i1 C i 2 <...( i n
S1 2

be a finite increasing subsequence of integerm, and set

U (uri) 2- (Bj (ir)) r < a

Then for every subsequence q <...< m

(10) dot U 0

1

with strict inequality if f both of the following conditions are satisfied:

(1). 0 i ) > 0 for all r 1

(ii). If there is some s e u such that ti  M t for some r, then
r

t r-d < ir d rr
where

d : k -max (plt +p = t i}.

Proof. Write

A :U

if 0 (ir) 0 for some r, then 0 (1 i)- 0 for all tj, withrJ

I 4 (< r ( j 4 m, by Lem S. Thus columns r,...,m of A are linearly

dependent and det A - 0. Without lose of generality we may assume further

that both the first superdiagonal and subdiagonal of A are positive,

-10-"



(11) 6o (i ) 0, r- 1,...,Ism-1 and 6 (i ) > 0, ri2,..., .

Otherwise, we would have, say, 6 (1 ) - 0 for sme r. It would follow

that 6 i - 0 for any L, vith I X r < j 4 n. Thus

det r] - otq*

where dot U and dot U~ r+ " are lower order

determinants of the same form. If U - 1, then A is a I x I matrix and

dot A > 0, trivially. Thus if we use induction on a, then det A would

already have the property declared in Theorem 1. Prom now on we always assume

(11) to hold.

We point out that (11) yields

(12) 0 qT~rr ) > 0, r M 1,000,10%

The only thing we have to prove In 0 q i -1) > 0 and 8 (i +1) > 0, while

in all the other cases this is a direct consequence of (11). Since

B q2(i 1 ) > 0' iI ,q2" hence LI - 1 0 U12- I > q then

1q9,k(il - 1) > 0, obviously. If t1 1 - t 04 and t11.1 < til, then
{pli 1 1 i11+ ) 1 i1 }

max pt- - 0 4 max (qit q tII+q =

So we also have 6 (i,1-1) > 0. The last possible case is

ti1 I- tPq 1 t . Then

, 1 i

max (pti 0 " tI - +p  + max h (pit -... t p)

4 1 + max (qlt - ...- t max (qlt -b.-t

Pq2  q24q q, q,+q

-11-.



therefore 0 q,(1 -1)) 0. Similarly, 0 qu(i +1) > 0.

As in Lemms 5, let

za 'q q L- +k 1a

We will proceed by induction on 131. if IzI - 0, then A is a diagonal

matrix, so the proof is trivial. Suppose now that, for IZI < n, our theorem

is proved, and we want to show the conclusion of Theorem I also holds for

IZI - U.

We have proved that if Mi is violated, then dot A. - 0. Suppose now

that (ii) does not hold. Then there in some aeTsuch that t, - t an

i i-d *Form j by dropping a from as we did in Lessa 4. Lotr-d r r
r

V am(4-~~ (t)r) -C-

(0 rokT* (1) 1 "qVk-1

Then A -VW by Leoma 2. Further, the Cauchy-Dinet formula (see (6]) gives

(13) det A- dt V Cm ew i i
Since ti r -t 5and t m - k=t i rd , we have

01 ke (i) 0 and OB-r'kj (i d) ~0

by Lomna 4. Furthermore,



ajkt (ih) - 0 for J 1Ir-dr-1 or j # ir h - 1 r'-r r

Consider the following matrix with d +1 rows:r

" " 1 ,, kig ' -d ) 0 1 -d k ''' ( i ) .- 0'
" 1,k, (r)d i-d,k,2 tr) iri,k,Rt(ir) ±r,k,,t r -d
r r r rr"r rr rr

Sr-d r-1tkas Ci 0r- r Ci,), r *'. 0 ko' ri 0, Ci)

All its entries except those in columns i r-d r,...,i r- are zero. Thus the

rank of this matrix is no bigger than dr.  Hence the dr+1 rows of this

matrix are linearly dependent. This shows that the rows r-dr, r-d+I#u..,r

of the matrix A are linearly dependent. Thus the rows r-dr, r-d+i,..,r

of eac V ili2P. are linearly dependent, so that

dot V 0 for all < , .. ,
g~ ~~ 11 '*. n 2 < i

Therefore det A - 0 by (13).

Suppose now that both the conditions i) and (ii) are satisfied. We want

to show det A > 0. We shall argue by induction on 131 again. Take

se x . Form v and a as we did in Lemma 4. Let V and W have the same

meaning as above. By induction hypothesis and Lemma 4, all products that

appear on the right-hand side of (13) are nonnegative. Let r be the least

integer such that ti N to Then t < t . There are two possibilities
r -1

to be discussed:

(G) it. 1 -1

-13-
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In this case, we choose

'h- ' - for h ) r,
{ h for h < r.

Then < 2 < ..< < By Lema 4 and the choice of the C's,

#~hk*R,£('h) > 0, h-w 12,...,=.

A (I

In addition, if h < r, then we have VCh "h and V +k -ih+ k  or

1h+k+i* Thus (12) together with Lma 5 tells us that

h k,. ,(Y,) > 0.

Sinilarly, if h ) r, then we have V u - and V %h a k I or

ih+ k so the above inequality also holds. By induction hypothesis we assert

that

dot V Cm]> 0 and det W > 0.

By(13) and (14) vs have Gtuq 2 q)~

(A)i-1 - i 1 .l1 In this case, condition (ii) gives

i (1 -8
r ,.d r r

r

where d. s- k - max {plt +p - tr 1. There exists an integer €,

1 ( c 4 such that ir.(€.1) -i r -(c-1) but Lr-c,< 1r c. Thus

( r-c <  r r U -,+1) - r-c " 1.

-14-
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Let
_ Ch Ifor h ) r-c+l,

ih for h 4 r-c.

From (15) and (16) we see that C 2 < ... < C " Now Loma 4 yields that

dot V 1l ' l  "' isl %O.

Using the same argument as in (a), we get

det V 4 .*f 3 0.

This proves our theorem.

Remark 2. If t is a strictly increasing sequence, Lema 5 can be

stated as follows:

0jk,j,t M)0 0

p

with strict inequality iff tj 4C ti, ti+k ( tJ+k. Furthermore, in Theorem 1,

the condition (ii) is automatically fullfilled as long as Mi) holds.

Remark 3. It is interesting that the Schoenberg-Whitney Theorem (see[91)

can be derived from our Theorem 1. Indeed, let T - (T )_- be a non-

decreasing knot sequence, T •2 ... < T, and let t be a knot sequence

formed by adding some knots to T so that has eactly k multiples at

each ~f, i-1,2,...,m. Then

N J,k,. (T 1r ) - J,k, ,l ( :i

according to (1). Now one could easily see that the Shoenberg-Whitney Theorem

is a consequence of Theorem I.

-15



Postscript

This work was done in July 1980. Later I became aware of the three

related papers (1], (5] and [7]. Essentially whether explicitly or

implicitly, these three papers view discrete B-splines as the coefficient

sequences associated with the expansion of continuous polynomial splines in

B-splines. This is just de Door's point of view (see[2]). In (1], the author

provided an algorithm for further subdivision of a knot sequence. The basic

idea of (I] is to investigate what happens when one inserts new knots into a

given knot sequence. The essential idea of the present paper is also

'inserting new knots' and "inserting one new knot each time'. In (5), the

authors develop more properties of discrete splines. Lemma 1 and 3, a part of

Lema 4 and 5 of this paper overlap with 151. However, (5] is based on the

recurrence formula, while my Theorem 1 does not need recurrence formula though

the proof for the recurrence formula (Lema 3) is more straightforward in my

opinion. in (7), the authors give the shortest way to prove the variation

diminishing property of D-spline approximation by using a geometric

observation. Their methods can be easily carried to proving that the

associated discrete spulne collocation matrix is sign regular, but it seems

hard to determine which minor is really positive along this way. In the

present paper, by the composition formular (Lema 2) and the Cauchy-Binet

formula, we are able to obtain the exact criterion for the positivity of a

given minor. I believe that the determination of such positivity is

significant and expect that Theorem 1 will play a role in discrete spline

interpolation, discrete minimization and other related topics.

-16-
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For an integer k ) 1, let I I- (t 1 ). be a nondecreasing real sequence

with ti < ttk I and let

(It k-1

i,k,_(x) " (tiD,...tj - [t,...,ti+kl])(*-x) .
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20. Abstract (cont.)

It is well-known that V are 9-splines of order k for the knot

sequence t. Suppose that N (ii is a sequence of integers and

rjs - tj. Then k allows the following representations

ko"IjktU CM iu,k,t

The coefficient sequence * is called a discrete B-spline with and

with respect to t. This paper develops several properties of discrete

a-splines and proves, in particular, the total positivity of the discrete

spline collocation matrix.
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